How many quasiparticles can be in a superconductor?

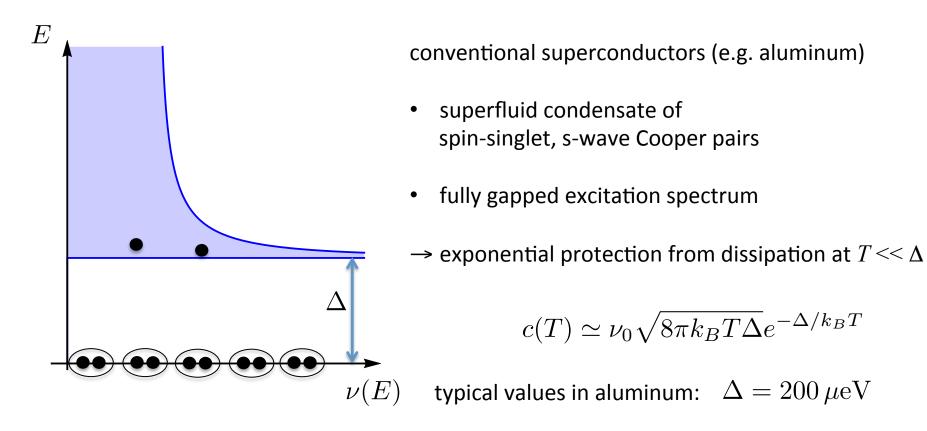
Manuel Houzet

with Anton Bespalov (→ Nizhni-Novgorod), Julia Meyer, and Yuli Nazarov (TU Delft)

CPTGA Workshop « Strongly disordered and inhomogeneous superconductivity »

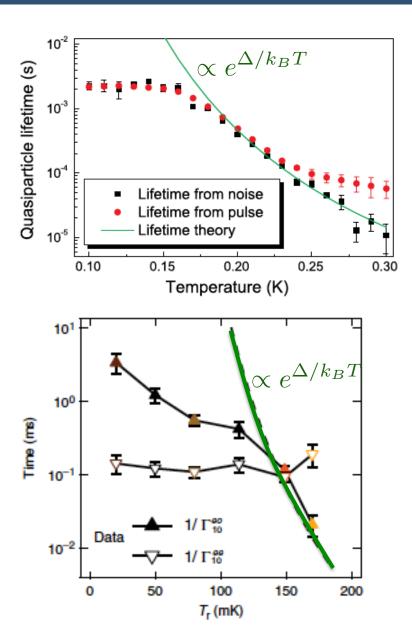
Grenoble, 22 novembre 2016

quasiparticles in superconductors



 $c(100 \text{ mK}) \approx 1 \,\mu \text{m}^{-3}$ $c(50 \text{ mK}) \approx 10^{-6} \,\mu \text{m}^{-3}$ $c(10 \text{ mK}) \approx 10^{-51} \,\mu \text{m}^{-3}$

experiment: excess quasiparticles



saturation of the lifetime in superconducting resonators at low T

$$\tau_r \simeq \frac{\tau_0}{2c} \frac{\nu_0 (k_B T_c)^3}{\Delta^2}$$

← de Visser *et al.*, PRL 2011

 $c \sim 25 - 55 \,\mu {\rm m}^{-3}$

 au_0 normal-metal electron-phonon relaxation rate at energy Δ

saturation of the coherence time of superconducting qubits at low T

$$\Gamma^{eo} \simeq \frac{c}{\pi\nu_0} \sqrt{\frac{2\omega_{01}}{\Delta}}$$

← Ristè et al., Nat. commun. 2013

 $c\sim 0.04\,\mu\mathrm{m}^{-3}$

 ω_{01} qubit frequency

Main results

Observation:

excess quasiparticles in virtually all superconducting devices which limit their performances

$$c \gtrsim 0.04 \,\mu \mathrm{m}^{-3}$$
 $c \gg c(T) \propto e^{-\Delta/k_B T}$

Our work:

generation-recombination model

→ residual quasiparticle concentration

- for delocalized quasiparticles above the superconducting gap $c \propto \sqrt{A}$ A: rate due a non-equilibrium agent
- for localized quasiparticles at mesoscopic fluctuations of the gap edge

$$c \propto rac{1}{\ln^3(1/A)}$$

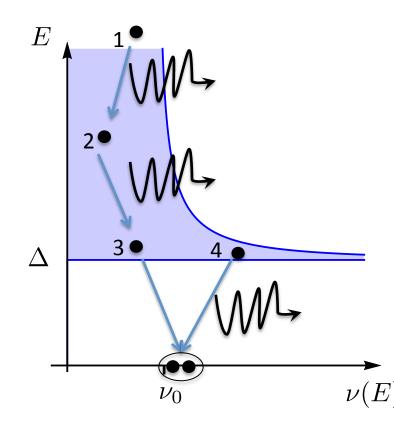
poor efficiency of shielding

• full spin-polarization of quasiparticles in small superconducting islands

Outline

- Motivation
- Generation/recombination model for delocalized quasiparticles
- localized states in disordered superconductors
- Our work: extremely slow relaxation of localized quasiparticles
 - Packing coefficient from a bursting bubbles model
 - Polarized and unpolarized states at weak spin-flip rate
- Conclusions & Perspectives

generation/recombination model



- generation due to a non-equilibrium agent:
 - EM and blackbody radiation,
 - cosmic rays
 - natural radioactivity
 - Martinis et al., PRL 2009
- fast energy relaxation by emitting phonons
- slow annihilation of two quasiparticles near the gap edge with rate

$$\Gamma_{34} = \bar{\Gamma} \int d\mathbf{r} \, p_3(\mathbf{r}) p_4(\mathbf{r})$$

Balance between generation (rate per volume A) and annihilation for delocalized quasiparticles near gap edge:

$$A = \bar{\Gamma}c^2 \implies c = \sqrt{A/\bar{\Gamma}}$$

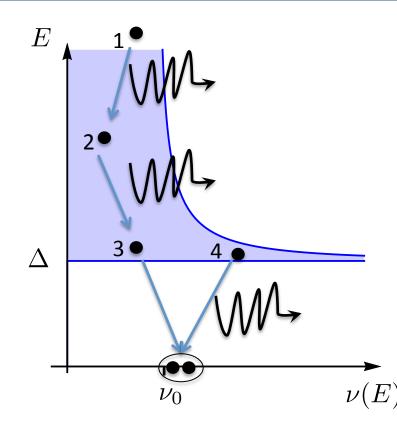
material constant in Aluminum

$$\bar{\Gamma} = 8 \frac{(\Delta/k_B T_c)^3}{\tau_0 \nu_0 \Delta} \approx 40 \,\mu \mathrm{m}^{-3} \mathrm{s}^{-1}$$

 \rightarrow scale for shielding the device

 $c < 25 \,\mu \mathrm{m}^{-3} \quad \rightarrow \quad P_{\mathrm{inj}} = A \Delta \mathcal{V} < 1 \,\mathrm{fW}$

generation/recombination model



- generation due to a non-equilibrium agent:
 - EM and blackbody radiation,
 - cosmic rays
 - natural radioactivity
 - Martinis et al., PRL 2009
- fast energy relaxation by emitting phonons
- slow annihilation of two quasiparticles near the gap edge with rate

$$\Gamma_{34} = \bar{\Gamma} \int d\mathbf{r} \, p_3(\mathbf{r}) p_4(\mathbf{r})$$

Balance between generation (rate per volume A) and annihilation for delocalized quasiparticles near gap edge:

$$A = \bar{\Gamma}c^2 \implies c = \sqrt{A/\bar{\Gamma}}$$

... but, if quasiparticles are localized, strong correlations in their positions modify *c*

disordered superconductors

 ℓ elastic mean free path \mathcal{E} superconducting coherence length

• clean metal $\ell > \xi$:

pairing of electrons with opposite spins and momenta

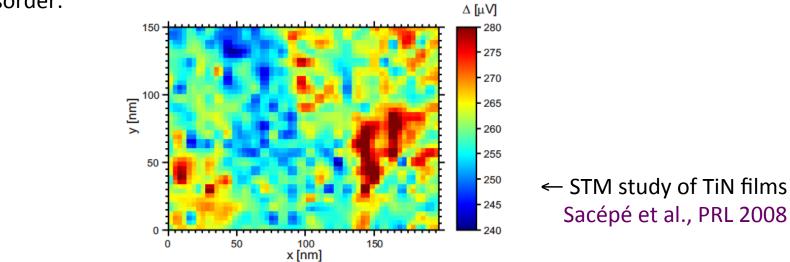
• dirty metal $\ell < \xi$:

pairing of electrons in time-reversed states

"Anderson theorem" (mean-field):

 Δ is unaffected by non-magnetic disorder and remains spatially uniform

Abrikosov-Gorkov 1958 Anderson 1959



At large disorder:

disordered superconductors

mesoscopic fluctuations of the gap

$$\delta\Delta(\mathbf{r}) = \Delta(\mathbf{r}) - \Delta$$
$$\langle\delta\Delta(\mathbf{r})\delta\Delta(\mathbf{r}')\rangle = (\delta\Delta)^2\delta(\mathbf{r} - \mathbf{r}')$$

Larkin and Ovchinnikov, JETP 1972

correlation radius $\lesssim \xi$

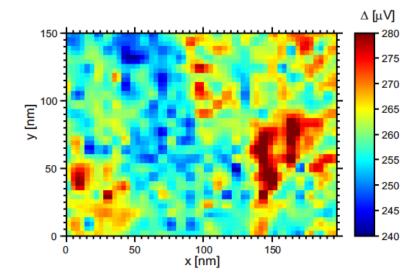
magnitude

$$\frac{(\delta\Delta)^2}{\Delta^2\xi^3} \sim \frac{1}{g^2} \ll 1$$

g dimensionless conductance on the scale $\mathcal E$

in bulk Al: $g\sim 10^4$

but $\delta\!\Delta$ can be larger in films with Coulomb repulsion

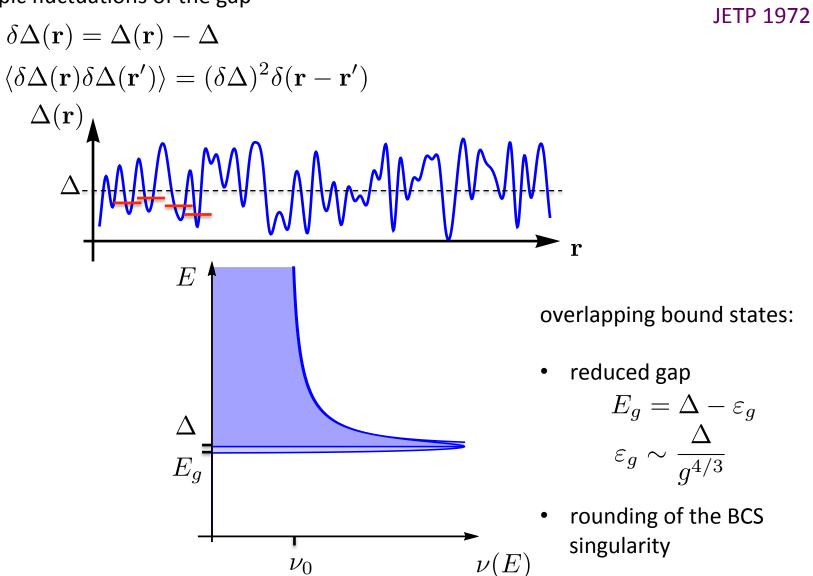


Skvortsov and Feigelman, PRL 2012

← STM study of TiN films Sacépé et al., PRL 2008

disordered superconductors

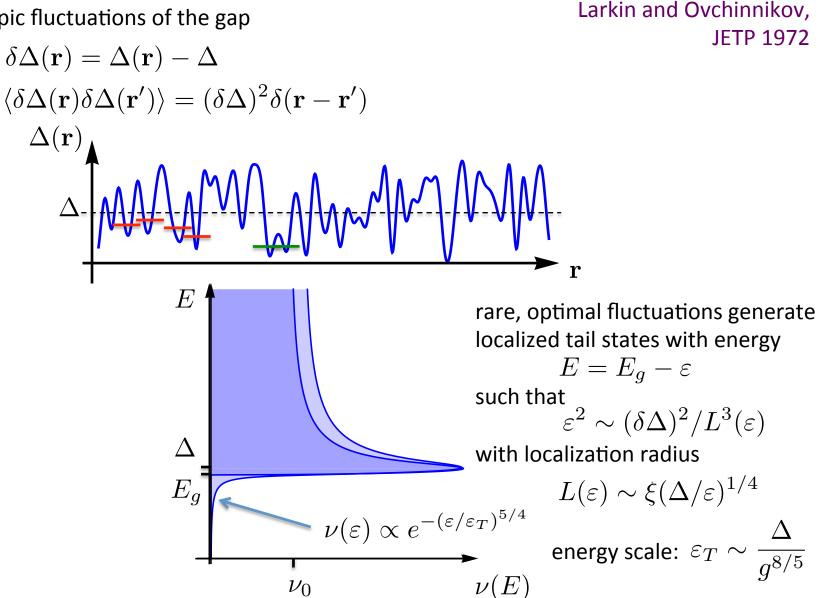
mesoscopic fluctuations of the gap



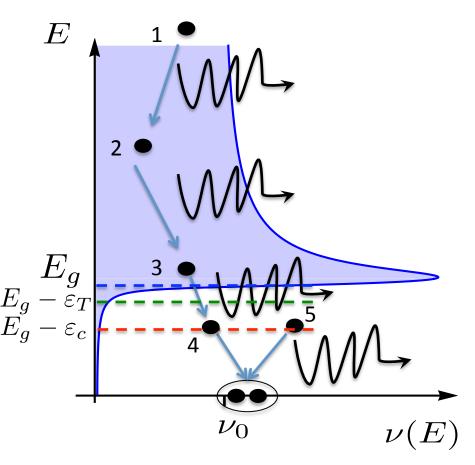
Larkin and Ovchinnikov,

tail states in disordered superconductor

mesoscopic fluctuations of the gap



Bottleneck for energy relaxation



fast energy relaxation does not stop at Δ : quasiparticles relax into the tail states

number of overlapping states with energy $< E_g - \varepsilon$: $N(\varepsilon) = L^3(\varepsilon) \int_{\varepsilon}^{\infty} d\varepsilon' \nu(\varepsilon')$ typically $N(\varepsilon_T) \sim g^{17/15} \gg 1$

relaxation stops when no more overlapping states with lower energy are available:

$$N(arepsilon_c) \sim 1$$
 at $arepsilon_c \sim arepsilon_T (\ln g)^{4/5}$

localization radius at energy ε_c

$$r_c \simeq 0.5\xi(\varepsilon_T/\Delta)^{-1/4} [\ln N(\varepsilon_T)]^{-1/5}$$
$$10^{-4} < \varepsilon_T/\Delta < 10^{-2}$$
$$\xi < r_c < 3\xi$$

generation/recombination model for localized states

- quasiparticles are generated at random points with rate A per unit volume
- they keep their positions
- they annihilate pairwise with the rate

$$\Gamma(\mathbf{R}) = \bar{\Gamma} \int d\mathbf{r} \, p_c(\mathbf{r}) p_c(\mathbf{r} + \mathbf{R}) \propto \frac{\bar{\Gamma}}{r_c^3} e^{-R/r_c}$$

 $p_c({f r}) \propto e^{-r/(2r_c)}$ most probable shape

of the state at ε_c

balance between generation and annihilation:

typical distance between particles $\ r \sim c^{-1/3}$

$$r \ll r_c$$
 (dense) $A = \overline{\Gamma}c^2 \implies c = \sqrt{A/\overline{\Gamma}}$

$$r \gg r_c$$
 (dilute) $Ar^3 \sim \frac{\bar{\Gamma}}{r_c^3} e^{-r/r_c} \implies c \propto \frac{1}{r_c^3 \ln^3 \left(\frac{\bar{\Gamma}}{Ar_c^6}\right)}$

simplified model: bursting bubbles

characteristic lengthscale:

$$\frac{r}{r_c} \approx \ln\left(\frac{\bar{\Gamma}}{Ar_c^6}\right)$$

 $r \gg r_c$

annihilation varies quickly with the distance d between two quasiparticles:

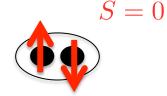
 r_c

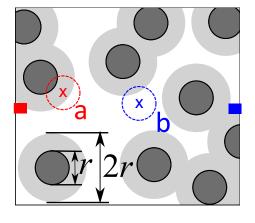
- fast annihilation if d < r•
- slow annihilation if d > r

 \rightarrow describe quasiparticles as bubbles with radius r/2 than cannot overlap

spin-selection rule: annihilation in singlet state

 \rightarrow let's assume a fast spin-flip rate





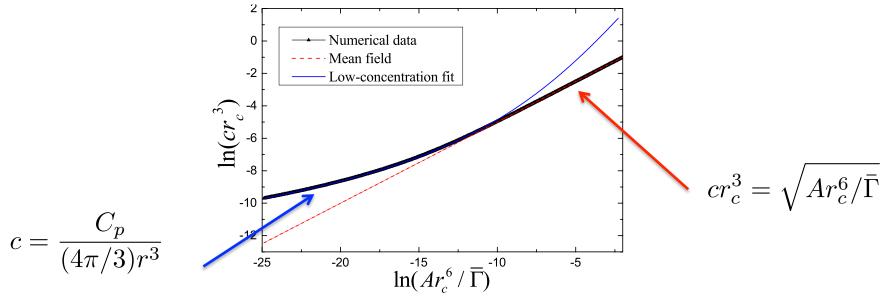
$$c = \frac{C_p}{(4\pi/3)r^3}$$

with packing coefficient:

 $C_p \approx 0.605 \pm 0.008$

Full dynamical simulation

use annihilation rate
$$\Gamma(\mathbf{R}) = \overline{\Gamma} \int d\mathbf{r} \, p_c(\mathbf{r}) p_c(\mathbf{r} + \mathbf{R})$$



with improved estimate for *r*:

$$Ar_c^6/\bar{\Gamma} = \frac{b(r/r_c)^{\beta-3}}{e^{-r/r_c}}e^{-r/r_c}$$

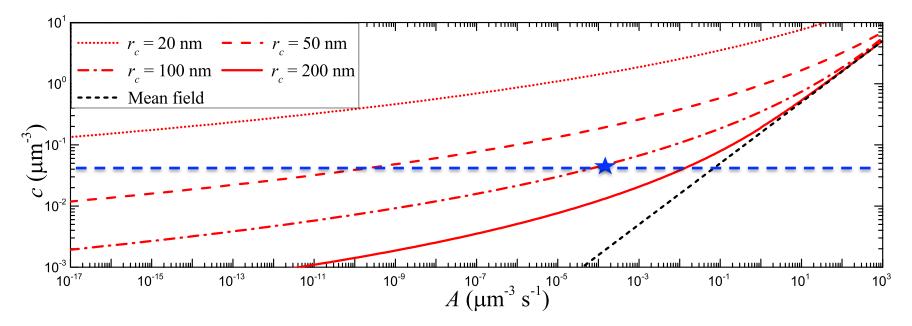
b = 0.008

 $\beta = 0.41$

cosmic radiation?

material parameter for Al $~\bar{\Gamma}=40\,\mu m^{-3} s^{-1}$

different values of r_c correspond to different disorder strengths



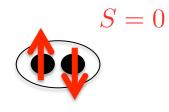
cosmic radiation at sea level dominated by muons with:

- mean energy in the GeV range
- flux of 1 muon/cm²/min
- stopping power in Al of 1 MeV/cm

 $r_c \sim 0.1 \,\mu\mathrm{m} \quad \rightarrow \quad c \sim 0.01 \,\mu\mathrm{m}^{-3}$

 \rightarrow $A \sim 10^{-4} \, s^{-1} \mu m^{-3}$

classical spin



spin selection rule: annihilation of quasiparticles in singlet state only

bursting bubbles model with classical spin

• with large spin-flip rate:

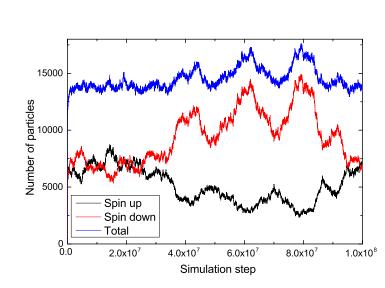
 $C_p \approx 0.605 \pm 0.008$

• without spin-flip:

 $C_p \approx 2.19 \pm 0.05$

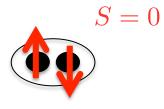
← large fluctuations

A. Bespalov et al. PRL 117, 117002 (2016)

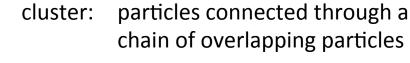


 $c = \frac{C_p}{(4\pi/3)r^3}$

quantum spin



In progress spin selection rule: annihilation of quasiparticles in singlet state only



 $|r_i - r_j| < r$

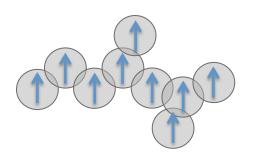
no decay if each pair of particles is in a spin-triplet state

→ cluster of N particles in maximal-spin state with $s = \frac{N}{2}$

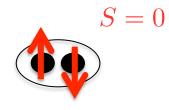
$$|\psi\rangle = \sum_{m=-s}^{\circ} c_m |sm\rangle$$

spin-coherent basis

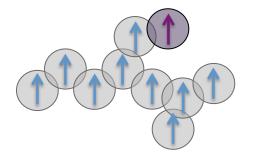
$$|s,\Omega\rangle = (\cos\frac{\theta}{2})^{2s} \exp[\tan\frac{\theta}{2}e^{i\varphi}\hat{S}_{-}]|s,s\rangle$$



survival vs decay



spin selection rule: annihilation of quasiparticles in singlet state only

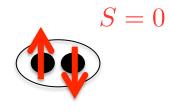


added particle overlapping with the cluster:

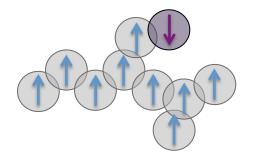
• if parallel spin

 \rightarrow cluster with N + 1 particles

survival vs decay



spin selection rule: annihilation of quasiparticles in singlet state only



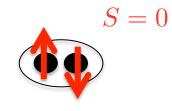
added particle overlapping with the cluster:

• if parallel spin

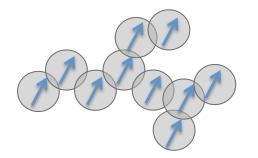
 \rightarrow cluster with N + 1 particles

- if antiparallel spin
 - → either annhilates with a partner and leaves a cluster with N 1 particles
 - \rightarrow or new cluster with N + 1 particles and tilted spin

survival wins over decay



spin selection rule: annihilation of quasiparticles in singlet state only

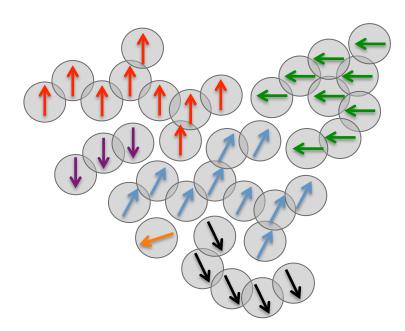


added particle overlapping with the cluster:

- if parallel spin
 - \rightarrow cluster with N + 1 particles
- if antiparallel spin
 - → either annhilates with a partner and leaves a cluster with N 1 particles
 - \rightarrow or new cluster with N + 1 particles and tilted spin

$$p_{\text{survival}} = \frac{1}{2} + \frac{1}{2(N+1)} > \frac{1}{2}$$

Polarized vs unpolarized state



Growth of particle number in a cluster vs loss of particles to other cluster at its border:

$$\frac{dN}{dt} = \frac{AV}{N} - ASr$$

$$V \propto L^3$$

$$S \propto L^2$$

The cluster cannot be dense in a big island:

$$N\sim L/r\ll V/r^3$$
 if $L\gg r$

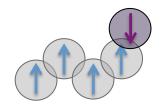
In small islands, large fluctuations can result in a single cluster. Then:

 $N(t) \propto \sqrt{t}$ (only limited by spin flips)

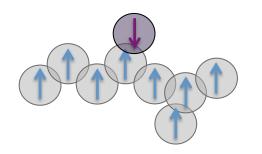
Model

Essential features of the model:

- spin direction vector per cluster
- clusters can loose particles



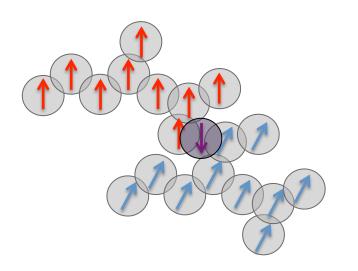
Model



Essential features of the model:

- spin direction vector per cluster
- clusters can loose particles, loose connections

Model



Essential features of the model:

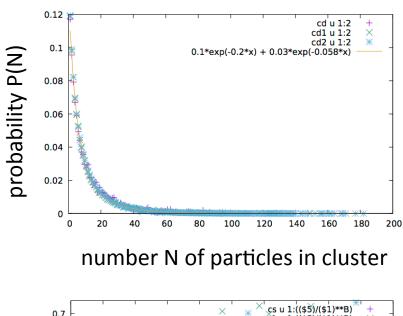
- spin direction vector per cluster
- clusters can loose particles, loose connections, and merge

some arbitrariness in the rules for merging, particle lost, and disconnection.

- reasonable classical limit: two clusters can merge if their spin vectors are close to parallel
- survival probality of two clusters with M and N particles:

 $p_{\text{survival}} = \frac{M+N+1}{(M+1)(N+1)}$

Unpolarized state



0.7 $I_{\alpha}/(r^2 N^{1.8})$ 0.6 0.5 \triangle *B) 0.4 0.3 0.2 0.1 0 20 40 60 80 100 120 140 180 200 160

- C_p = 2.4 (close to classical spins)
- 12% of single particles
- <N>=12
- rare big clusters

the inertia tensor characterizes the clusters' shape

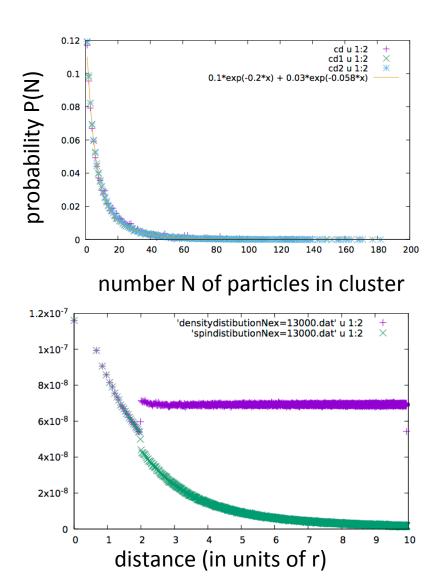
- not much elongated
- eigenvalues \c $\sim NL^2_{
 m cluster}$

 $L_{\rm cluster}/r \sim N^{0.4} > N^{1/3}$

→ clusters interpenetrate

number N of particles in cluster

Unpolarized state



- C_p = 2.4 (close to classical spins)
- 12% of single particles
- <N>=12
- big clusters

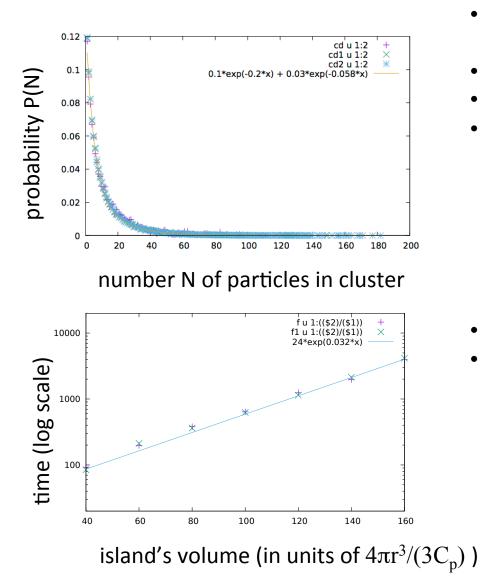
d<2r

- particle in the same cluster

d>2r:

- homogeneous state
- exponentially suppressed spin correlation

Unpolarized state



- C_p = 2.4 (close to classical spins)
- 12% of single particles
- <N>=12
- big clusters

- large fluctuations
- exponential time scale in island's volume for having all particles in a single cluster (which then eventually grows like t^{0.5})

Conclusion and perspectives

• quasiparticles in localized states don't recombine easily

→ large excess quasiparticles in moderately disordered superconductors

- strategies to reduce their concentration
 - cleaner superconductors
 - shielding of the relevant non-equilibrium source
 - finite T (recombination of mobile quasiparticles is more efficient?)
- Physical observables?
 - EM absorption...
 - role of large space and time fluctuations?
- Polarized state:
 - more quasiparticles in isolated islands than in the bulk
 - mechanism for low-frequency flux noise due to unpaired spins in qubits (Faoro and loffe...)?

Refs: A. Bespalov et al. PRL 117, 117002 (2016)

and in progress...