The magnetic field induced insulating state in amorphous superconductors

Benjamin Sacépé

Néel Institute, CNRS & Univ. Grenoble Alpes

Strongly disordered and inhomogeneous superconductivity Grenoble, Nov. 2016

Idan Tamir

Maoz Ovadia (Harvard)

Dan Shahar

Johanna Seidemann

Benjamin Piot

Christoph Strunk

The Superconductor-Insulator Transition

Strongin et al. Phys. Rev. B 1, 1078 (1970)

Haviland, Lui, and Goldman, Phys. Rev. Lett. 62, 2180 (1989)...

104 BISMUTH 103 4.36 Å 10² (k,۵/۵) ا œ 100 74.27 Å 10 IO' T (K)

Thickness

Reviews: Finkel'stein ('94) Markovic and Goldman ('98) Gantmakher and Dolgopolov ('10)

Prototypical quantum phase transition

Strictly T=0.

Driven by:

Thickness Magnetic field Disorder Carrier density Pressure Chemical composition Structural composition

• • •

Suppression of superconductivity

M.P.A. Fisher ('90)

Insulator with localized Cooper-pairs ?

ARTICLES

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NPHYS2037

ARTICLES PUBLISHED ONLINE: 30 JANUARY 2011 | DOI: 10.1038/NPHYS1892

Localization of preformed Cooper pairs in disordered superconductors

Benjamin Sacépé^{1,2}*^{†‡}, Thomas Dubouchet^{1†}, Claude Chapelier¹, Marc Sanquer¹, Maoz Ovadia², Dan Shahar², Mikhail Feigel'man³ and Lev Ioffe⁴

Fractal superconductivity near localization threshold M.V. Feigel'man^{a,b}, L.B. Ioffe^{a,c,d,*}, V.E. Kravtsov^{a,e}, E. Cuevas^f

> nature physics

Single- and two-particle energy gaps across the disorder-driven superconductor-insulator transition

Karim Bouadim, Yen Lee Loh, Mohit Randeria and Nandini Trivedi*

Direct superconductor-insulator transition

 $n \lesssim 10^{21} cm^{-3}$

Titanium nitride

T. Baturina PRLs ('07)

 $n \lesssim 10^{22} cm^{-3}$

Giant magnetoresistance peak

Sambandamurthy et. al. PRL ('05)

Giant magnetoresistance peaks

Insulating peak in a:InO

R raises by 1 decade per 0.01 tesla

Paalanen, Hebard, Ruel PRL ('90) Sambandamurthy et al. PRL ('04) Steiner, Kapitulnik et al. PRL ('05)

Disorder-dependence of the insulating peak

Amorphous indium oxide (a:InO)

- \blacktriangleright E-gun evaporation of In_2O_3 on SiO₂ under O₂ pressure
- 30-60 nm thick
- → e-density : $n \sim 10^{20} 10^{21} cm^{-3}$
- > Disorder : $k_F l_e \sim 0.3 0.4$

Disorder tuned by annealing, thickness or O2 pressure

Amorphous indium oxide (a:InO)

- \blacktriangleright E-gun evaporation of In_2O_3 on SiO₂ under O₂ pressure
- 30-60 nm thick
- ▶ e-density : $n \sim 10^{20} 10^{21} cm^{-3}$
- > Disorder : $k_F l_e \sim 0.3 0.4$

Amorphous indium oxide (a:InO)

- \blacktriangleright E-gun evaporation of In_2O_3 on SiO₂ under O₂ pressure
- ➢ 30-60 nm thick
- → e-density : $n \sim 10^{20} 10^{21} cm^{-3}$
- > Disorder : $k_F l_e \sim 0.3 0.4$

Low disorder

Medium disorder

High disorder: Insulating peak

End of Cooper-pairing

B.S. et al. PRB 91, 220508(R) (2015)

The insulator at T<0.2 K

Current–voltage characteristics

Insulating peak

Non-linear IVs and voltage threshold

Non linear IV

Non-linear IVs and voltage threshold

Transition to abrupt IV

Voltage threshold

Experimental Evidence for a Collective Insulating State in Two-Dimensional Superconductors

G. Sambandamurthy,¹ L. W. Engel,² A. Johansson,¹ E. Peled,¹ and D. Shahar¹

¹Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel, ²National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA (Received 18 March 2004; published 12 January 2005)

 10^{-5} 10^{-6} 10^{-6} 10^{-7} 10^{-8} 10^{-8} 10^{-8} 10^{-8} 10^{-8} 10^{-5} 10^{-5} 10^{-3} V_{dc} $(10^{-3}$ V)

a:InO_x

B = 0.9 T B = 0.9 T 10^{-1} 10^{-2} 10^{-2} 10^{-3} (a) 20 mK -12 -8 -4 0 4 8 12 $V_{dc} (mV)$

TiN

Baturina et al. PRL 99, 257003 (2007)

Dramatic transition occurs around $T^* \sim 0.1 K$

Superinsulator and quantum synchronization

Valerii M. Vinokur¹, Tatyana I. Baturina^{1,2,3}, Mikhail V. Fistul⁴, Aleksey Yu. Mironov^{2,3}, Mikhail R. Baklanov⁵ & Christoph Strunk³

NATURE 452, 613 (2008)

Ovadia, Sacépé, Shahar PRL '09

ട്ര

Jumps in Current-Voltage Characteristics in Disordered Films

Boris L. Altshuler,^{1,2} Vladimir E. Kravtsov,³ Igor V. Lerner,⁴ and Igor L. Aleiner¹

Hysteresis electron overheating

Jumps in Current-Voltage Characteristics in Disordered Films

Boris L. Altshuler,^{1,2} Vladimir E. Kravtsov,³ Igor V. Lerner,⁴ and Igor L. Aleiner¹

- 1. Electrons and phonons are decoupled
- 2. Electrons are strongly interacting (can have $T_{el} \neq T_{ph}$)
- 3. Intrinsic I-V is linear: heating is the only source of non-linearity
- 4. R is a fast function of *electron temperature*

$$R(T_{el}) = R_0 e^{(T_0/T_{el})^{\gamma}}, with \gamma \leq 1$$

Ś

Jumps in Current-Voltage Characteristics in Disordered Films

Boris L. Altshuler,^{1,2} Vladimir E. Kravtsov,³ Igor V. Lerner,⁴ and Igor L. Aleiner¹

Heat balance equation :

$$\frac{V^2}{R(T_{el})} = \Gamma\Omega\left(T_{el}^6 - T_{ph}^6\right) \qquad R(T_{el}) = R_0$$

$$R(T_{el}) = R_0 e^{(T_0/T_{el})^{\gamma}}$$

Lowering T_{phonon}

One solution at $T_{el} > T_{ph}$

Multiple solutions for $\rm T_{el}$

Changing voltage...

Thermal bi-stability

Determine T_{el}

Determine T_{el}

Electron overheating

Assume hot-electron scenario \Rightarrow recover heat balance equation !

Excluded region

IV's computed with R(T) curve and heat balance eqation

M. Ovadia, B. Sacépé, and D. Shahar Phys. Rev. Lett. 102, 176802 (2009) B. Altshuler, V. Kravtsov, I. Lerner, and I. Aleiner Phys. Rev. Lett. 102, 176803 (2009)

Heating at B = 11 T

$$\frac{V^2}{R(T_{el})} = \Gamma\Omega(T_{el}^6 - T_{ph}^6)$$

Heating at lower field

 $\frac{V^2}{R(T_{el})} = \Gamma \Omega \left(I_{el}^{\circ} - T_{ph}^{6} \right)$

Heating at lower field

 $\frac{V^2}{R(T_{el})} = \Gamma \Omega \left(T_{el}^{\alpha} - T_{ph}^{\alpha} \right), \quad \alpha > 10 ???$

0.2 0.15

0.13

0.11

0.1

0.09

0.08

0.07

0.06 0.05 0.04 0.03

0.02

• 0.017

10[°]

Exponentially suppressed cooling rate at B=7T

Conclusion on non-linear transport

 \square Charge carriers are interacting and form a bath at T_{el}

☑ Charge carriers and phonons are **weakly coupled**

☑ *IV* non-linearities due to **electron overheating**

Available online at www.sciencedirect.com

Annals of Physics 321 (2006) 1126-1205

www.elsevier.com/locate/aop

Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states

D.M. Basko^{a,b,*}, I.L. Aleiner^b, B.L. Altshuler^{a,b,c}

^a Department of Physics, Princeton University, Princeton, NJ 08544, USA
^b Physics Department, Columbia University, New York, NY 10027, USA
^c NEC-Laboratories America, 4 Independence Way, Princeton, NJ 085540, USA

Received 14 August 2005; accepted 30 November 2005 Available online 23 January 2006

$$\begin{split} &[\mathbf{i}\partial_{t_1} - \xi_l(\boldsymbol{\rho})]\hat{\mathcal{G}}_l(\boldsymbol{\rho}) = \hat{\tau}_0\delta(t_1 - t_2) + \hat{\boldsymbol{\Sigma}}_l(\boldsymbol{\rho})\circ\hat{\mathcal{G}}_l(\boldsymbol{\rho});\\ &[-\mathbf{i}\partial_{t_2} - \xi_l(\boldsymbol{\rho})]\hat{\mathcal{G}}_l(\boldsymbol{\rho}) = \hat{\tau}_0\delta(t_1 - t_2) + \hat{\mathcal{G}}_l(\boldsymbol{\rho})\circ\hat{\boldsymbol{\Sigma}}_l(\boldsymbol{\rho});\\ &\hat{\mathcal{G}} = \begin{bmatrix} \mathcal{G}_l^R(\boldsymbol{\rho}) & \mathcal{G}_l^K(\boldsymbol{\rho})\\ 0 & \mathcal{G}_l^A(\boldsymbol{\rho}) \end{bmatrix}_K; \quad \hat{\boldsymbol{\Sigma}} = \begin{bmatrix} \boldsymbol{\Sigma}_l^R(\boldsymbol{\rho}) & \boldsymbol{\Sigma}_l^K(\boldsymbol{\rho})\\ 0 & \boldsymbol{\Sigma}_l^A(\boldsymbol{\rho}) \end{bmatrix}_K;\\ &\hat{\tau}^0 = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}_K; \quad \hat{\tau}^2 = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}_K. \end{split}$$

$$\frac{(l,\boldsymbol{\rho})}{\mu_1 \qquad \mu_2} = i \left[\hat{G}_l(\boldsymbol{\rho}) \right]_{\mu_1 \mu_2} = i \begin{bmatrix} G_l^R(\boldsymbol{\rho}) & G_l^K(\boldsymbol{\rho}) \\ 0 & G_l^A(\boldsymbol{\rho}) \end{bmatrix}_{\mu_1 \mu_2}$$

$$(-i\hat{\Sigma}_l(\rho) = \text{Fig. 4} + \text{Fig. 5} + \dots$$

PHYSICAL REVIEW B 76, 052203 (2007)

Possible experimental manifestations of the many-body localization

D. M. Basko,^{1,*} I. L. Aleiner,¹ and B. L. Altshuler^{1,2}

¹Physics Department, Columbia University, New York, New York 10027, USA ²NEC-Laboratories America, Inc., 4 Independence Way, Princeton, New Jersey 08540, USA (Received 24 July 2007; published 23 August 2007; publisher error corrected 14 September 2007)

Recently, it was predicted that if all one-electron states in a noninteracting disordered system are localized, the interaction between electrons in the absence of coupling to phonons leads to a finite-temperature metalinsulator transition. Here, we show that even in the presence of a weak coupling to phonons the transition manifests itself (i) in the nonlinear conduction, leading to a bistable *I-V* curve, and (ii) by a dramatic enhancement of the nonequilibrium current noise near the transition.

The insulator at T < 0.2 K Ohmic transport

Ohmic transport

Ohmic transport

R (0)

Ohmic transport

Arrhenius plot

Efros-Shklovskii Hopping at high B

$$R(T) = R_{ES} \times exp\left\{\left(\frac{T_{ES}}{T}\right)^{1/2}\right\}$$

Resistative $(\varphi \bar{a}^1) B = B c$

Fit Parameters

$$\sigma(T) = \sigma_0 \times exp\left\{-\frac{T_0}{T - T^*}\right\}$$

Many-body localization ?

M. Ovadia et al. Scientific Reports 5, 13503 (2015)

Thank you.