Dynamics of Majorana fermions: topological protection and teleportation

A. S. Mel'nikov

Institute for Physics of Microstructures RAS Nizhny Novgorod, Russia

I. M. Khaymovich

J. P. Pekola

Aalto University, Low Temperature Laboratory, Finland

> Introduction.

Majorana states. Bogolubov transformation etc. Examples: p-wave superconductors, semiconducting nanowires and topological insulators with induced superconductivity.

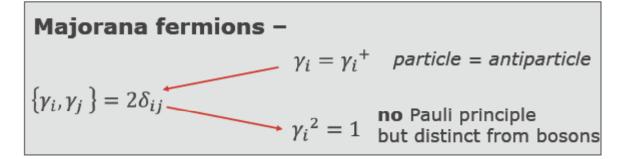
- Teleportation as a test for Majorana particles. Nonlocality vs absence of noise correlations. Coulomb blockade as a recipe to restore nonlocality
- > NISIN. DC transport
- > NISIN. AC response.

Teleportation paradox and topological stability of Majorana states.

Ettore Majorana 1906-?

Bosons -
$$\psi(r_1, r_2) = \psi(r_2, r_1)$$
 $\begin{bmatrix} c_i, c_j^+ \end{bmatrix} = \delta_{ij}$
 $\begin{bmatrix} c_i, c_j \end{bmatrix} = 0$

Fermions -
$$\psi(r_1, r_2) = -\psi(r_2, r_1)$$
 $\begin{cases} c_i, c_j^+ \\ = \delta_{ij} \\ \{c_i, c_j^+ \} = 0 \\ c_i^2 = 0 \end{cases}$



$$c = \frac{1}{2}(\gamma_1 + i\gamma_2) \quad \text{with} \quad \gamma_i = \gamma_i^+$$

$$\gamma_1 = c + c^+ \qquad \gamma_2 = (1/i)(c - c^+)$$

BCS mean field theory. Bogolubov canonical transformation. No changes in the operator commutation rules

Annihilation
and creation
electron
operators
$$\hat{\Psi}_{\alpha}(\vec{r}) = \sum_{n} \left(u_{\alpha n}(\vec{r}) \hat{c}_{n} + v_{\alpha n}^{*}(\vec{r}) \hat{c}_{n}^{+} \right)$$
 Annihilation
and creation
quasiparticle
operators

Inverse transformation

$$\hat{c}_{n} = \sum_{\alpha} \int d^{3}r \left(u_{\alpha n}^{*}(\vec{r}) \hat{\Psi}_{\alpha} + v_{\alpha n}^{*}(\vec{r}) \hat{\Psi}_{\alpha}^{+} \right)$$
$$\hat{c}_{n}^{+} = \sum_{\alpha} \int d^{3}r \left(u_{\alpha n}(\vec{r}) \hat{\Psi}_{\alpha}^{+} + v_{\alpha n}(\vec{r}) \hat{\Psi}_{\alpha} \right)$$

Fermi commutation rules:

Orthogonality condition:

Complete set of functions:

$$\sum_{\lambda} u_{\alpha\lambda}(\vec{r}) u_{\beta\lambda}^{*}(\vec{r}') = \delta(\vec{r} - \vec{r}') \delta_{\alpha\beta}$$
$$\sum_{\lambda} v_{\alpha\lambda}(\vec{r}) u_{\beta\lambda}^{*}(\vec{r}') = 0$$

Bogolubov – de Gennes equations and their symmetry

$$(\hat{H} - \mu) u_{\alpha} + \int \Delta_{\alpha\beta}(r, r') v_{\beta}(r') d^{3}r' = \mathcal{E} u_{\alpha}$$
$$\int \Delta_{\alpha\beta}^{+}(r', r) u_{\beta}(r') d^{3}r' + (\mu - \hat{H}^{*}) v_{\alpha} = \mathcal{E} v_{\alpha}$$

$$\Delta_{\alpha\beta}(\mathbf{r},\mathbf{r}') = -\Delta_{\beta\alpha}(\mathbf{r}',\mathbf{r})$$

$$\mathcal{E} \rightarrow -\mathcal{E}$$

$$\begin{pmatrix} u_{\alpha} \\ v_{\alpha} \end{pmatrix} \rightarrow \begin{pmatrix} v_{\alpha}^{*} \\ v_{\alpha}^{*} \\ u_{\alpha}^{*} \end{pmatrix}$$

All states come in pairs???

Self-consistency condition.

$$\Delta_{\alpha\beta} = \frac{1}{4} U_{\alpha\beta,\delta\gamma}(\mathbf{r},\mathbf{r}') \sum_{n} \left(1 - 2f(\epsilon_n)\right) \left(v_{\gamma,n}^*(\mathbf{r})u_{\delta,n}(\mathbf{r}') - v_{\delta,n}^*(\mathbf{r}')u_{\gamma,n}(\mathbf{r})\right)$$

Singlet pairing

$$\Delta_{\alpha\beta}(r,r') = i\sigma_y D(r,r')$$
$$D(r,r') = D(r',r)$$

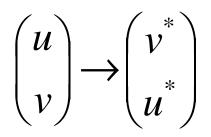
 $\mathcal{E}\!\rightarrow\!-\!\mathcal{E}$

 $\begin{pmatrix} u \\ v \end{pmatrix} \rightarrow \begin{pmatrix} -v^* \\ u^* \end{pmatrix}$

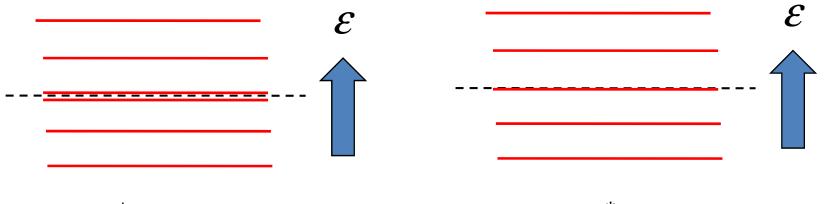
Triplet pairing

$$\Delta_{\alpha\beta}(r,r') = i\sigma_{y}\vec{\sigma}\vec{D}(r,r')$$
$$\vec{D}(r,r') = -\vec{D}(r',r)$$

 $\mathcal{E} \rightarrow -\mathcal{E}$



Is it possible to get a state without a partner? Majorana state



 $c^+ \neq c$

Standard fermions (with usual commutation rules)

 $u_{\alpha} = v_{\alpha}^* \qquad c^+ = c$

???? Majorana fermions (not fermions at all)

 $c^{+}c + cc^{+} = 1$ cc + cc = 0

Obvious contradiction:

We can not change statistics using canonical Bogolubov tranformation

Partly defined quasiparticle

$$\hat{\Psi}_{\alpha}(\vec{r}) = u_{\alpha 0}(\vec{r})(\hat{c}_{0} + \hat{c}_{0}^{+}) + \sum_{n \neq 0} \left(u_{\alpha n}(\vec{r})\hat{c}_{n} + v_{\alpha n}^{*}(\vec{r})\hat{c}_{n}^{+} \right)$$
$$\hat{\Psi}_{\alpha}^{+}(\vec{r}) = u_{\alpha 0}^{*}(\vec{r})(\hat{c}_{0} + \hat{c}_{0}^{+}) + \sum_{n \neq 0} \left(u_{\alpha n}^{*}(\vec{r})\hat{c}_{n}^{+} + v_{\alpha n}(\vec{r})\hat{c}_{n} \right)$$

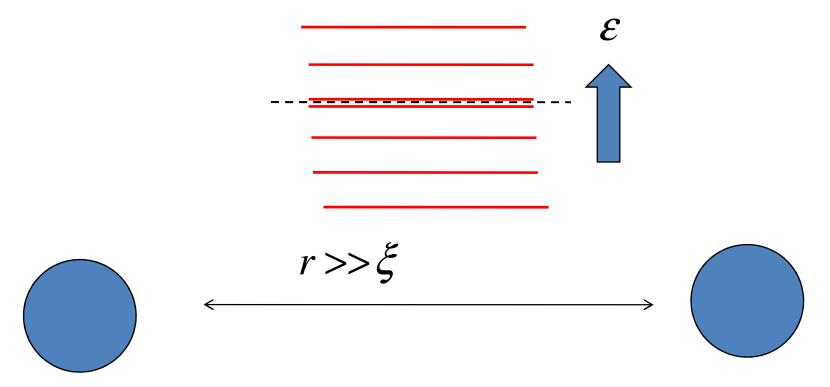
$$\hat{a} = (\hat{c}_{0} + \hat{c}_{0}^{+})/2 = \sum_{\alpha} \int d^{3}r \left(u_{\alpha 0}^{*}(\vec{r}) \hat{\Psi}_{\alpha} + u_{\alpha 0}(\vec{r}) \hat{\Psi}_{\alpha}^{+} \right)$$
$$\hat{c}_{0} = \hat{a} + i\hat{b}$$

How to define this b-part???

Possible answer:

Let us find another ill-defined quasiparticle!

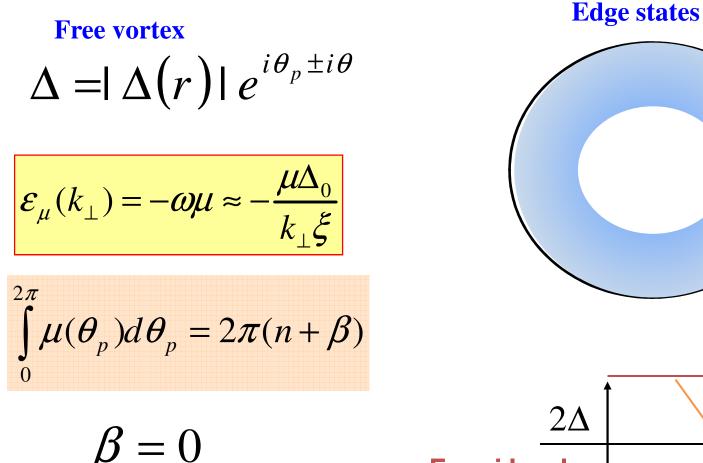
A standard way to overcome the problem: We construct the operator **b** from another zero energy state The states which define **a** and **b** are far away from each other

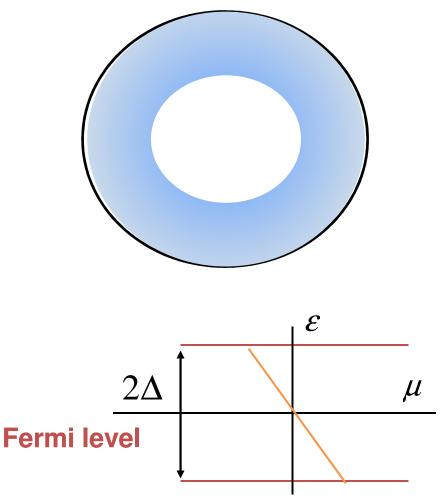


Examples:

vortices in p-wave superconductors (G.E.Volovik, 1997) Edge states (Kitaev 1D p-wave superconductor) Systems with induced superconductivity

P-wave superconductors. Sr_2RuO_4 as a possible candidate? *He-3*



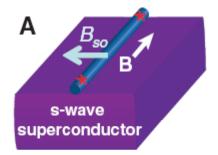


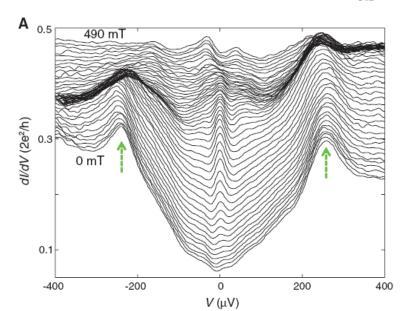
Systems with induced superconducting order

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik, ¹* K. Zuo, ¹* S. M. Frolov, ¹ S. R. Plissard, ² E. P. A. M. Bakkers, ^{1,2} I. P. Kouwenhoven¹+

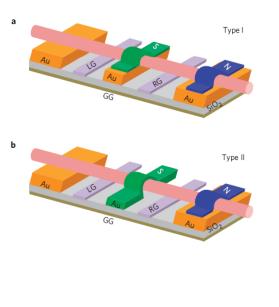
We use InSb nanowires (15), which are known to have strong spin-orbit interaction and a large g factor (16). From our earlier quantumdot experiments, we extract a spin-orbit length $l_{so} \approx 200$ nm corresponding to a Rashba parameter $\alpha \approx 0.2$ eV·Å (17). This translates to a spinorbit energy scale $\alpha^2 m^*/(2\hbar^2) \approx 50 \mu eV$ (m* =

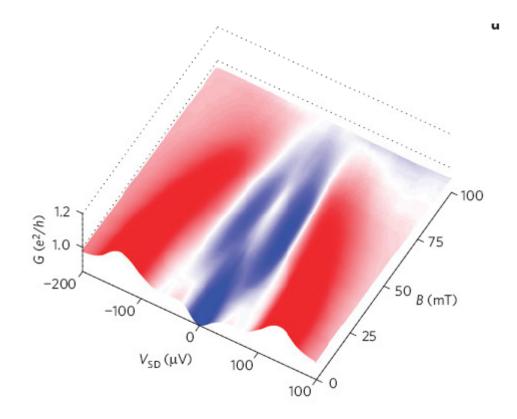




Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions

Anindya Das[†], Yuval Ronen[†], Yonatan Most, Yuval Oreg, Moty Heiblum^{*} and Hadas Shtrikman

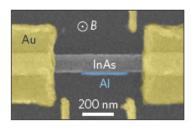


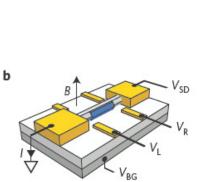


Parity lifetime of bound states in a proximitized semiconductor nanowire

A. P. Higginbotham^{1,2†}, S. M. Albrecht^{1†}, G. Kiršanskas¹, W. Chang^{1,2}, F. Kuemmeth¹, P. Krogstrup¹,

T. S. Jespersen¹, J. Nygård^{1,3}, K. Flensberg¹ and C. M. Marcus^{1*} c





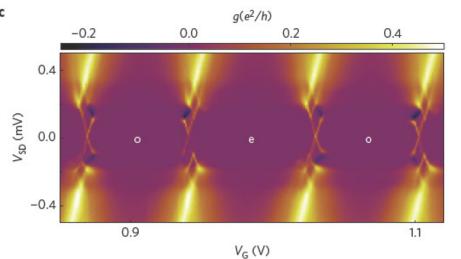
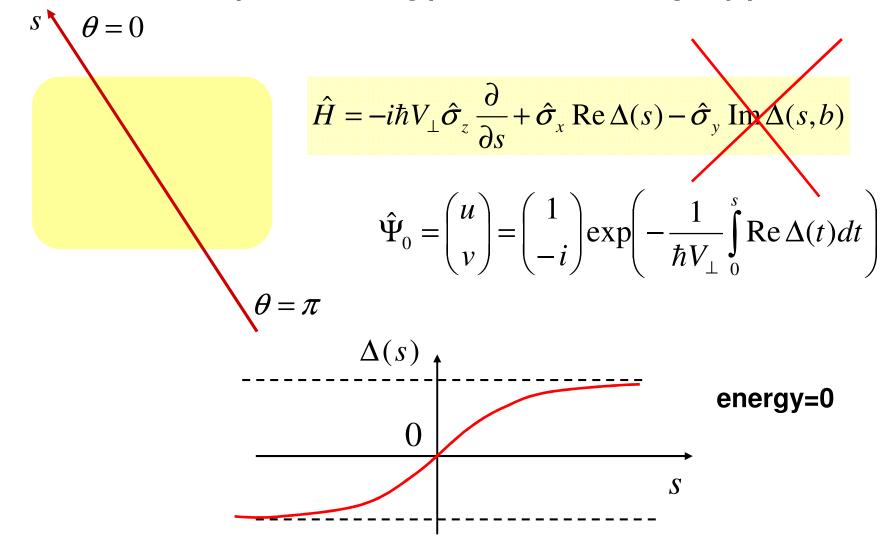


Figure 1 | Nanowire-based hybrid quantum dot. a, Scanning electron micrograph of the reported device, consisting of an InAs nanowire (grey) with a segment of epitaxial AI on two facets (blue) and Ti/Au contacts and side gates (yellow) on a doped silicon substrate with 100 nm oxide. **b**, Device schematic and measurement set-up, showing the orientation of the magnetic field, *B*. **c**, Differential conductance, *g*, as a function of effective gate voltage, *V*_G, and source-drain voltage, *V*_{SD}, at *B*=0. Even (e) and odd (o) occupied Coulomb valleys are labelled. General recipe how to arrange zero energy states (at the Fermi level).

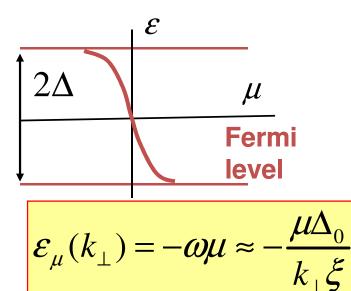
superconducting phase should change by pi



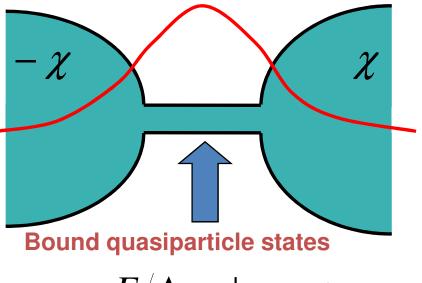
Examples:

vortex

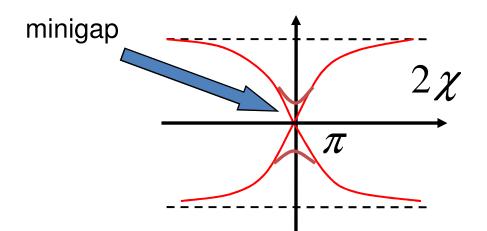
Anomalous spectral branch.



Josephson junction



$$E/\Delta = \pm \cos \chi$$



Sample edge

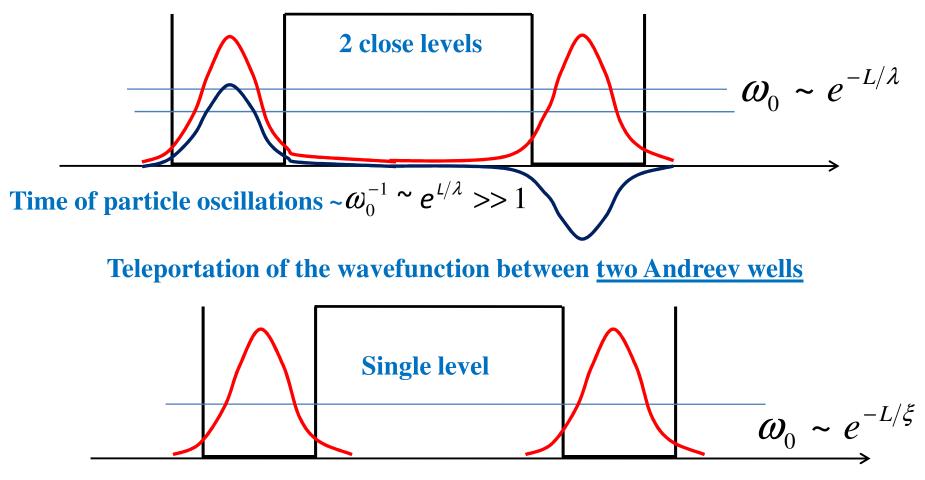
Vacuum or insulator P-wave superconductor

$$-\Delta$$

 $+\Delta$

Nonlocality as an inherent property of Majorana particles. Teleportation. Topological protection against perturbations.

Oscillations of the wavefunction between two quantum wells



Time of particle transfer =0

IOP PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 40 (2007) 1479-1488

doi:10.1088/0953-4075/40/8/002

Stretched quantum states emerging from a Majorana medium

Gordon W Semenoff¹ and Pasquale Sodano^{2,3}

PRL 100, 027001 (2008)

PHYSICAL REVIEW LETTERS

week ending 18 JANUARY 2008

Testable Signatures of Quantum Nonlocality in a Two-Dimensional Chiral *p*-Wave Superconductor

Sumanta Tewari,¹ Chuanwei Zhang,¹ S. Das Sarma,¹ Chetan Nayak,^{2,3} and Dung-Hai Lee^{4,5}

Nonlocality vs absence of noise correlations.

PRL 98, 237002 (2007)

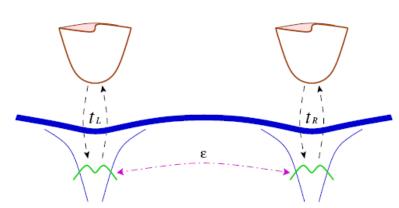
PHYSICAL REVIEW LETTERS

week ending 8 JUNE 2007

Observing Majorana bound States in *p*-Wave Superconductors Using Noise Measurements in Tunneling Experiments

C. J. Bolech^{1,2} and Eugene Demler¹

¹Physics Department, Harvard University, Cambridge Massachusetts 02138, USA ²Physics&Astronomy Department, Rice University, Houston Texas 77005, USA (Received 27 July 2006; published 5 June 2007)



$$\frac{S_{\alpha\beta}(\omega=0)}{e^2} = \coth\left(\frac{eV}{2T}\right) \left\{ 2\delta_{\alpha\beta}\frac{I}{e} - \frac{\Gamma^2}{2\pi} \left[\frac{(\omega'-\varepsilon)}{(\omega'-\varepsilon)^2 + \Gamma^2}\right]_{-\mu}^{+\mu} - \alpha\beta \frac{\Gamma^2}{4\pi\varepsilon} \ln\frac{(\varepsilon+\mu)^2 + \Gamma^2}{(\varepsilon-\mu)^2 + \Gamma^2} \right].$$

Notice that the diagonal and off-diagonal matrix components of $S_{\alpha\beta}$ are different now. In particular, we remark that $\lim_{\epsilon \to 0} S_{\alpha\bar{\alpha}} = 0$. Taken together with the result given above for the current, this indicates that in the $\epsilon \to 0$ limit, the right and left tunneling processes are completely independent even at the level of current fluctuations. It is

Interplay between the Andreev reflection at the end of the wire and crossed Andreev reflection with the transmission of a hole to the second lead

PRL 101, 120403 (2008)

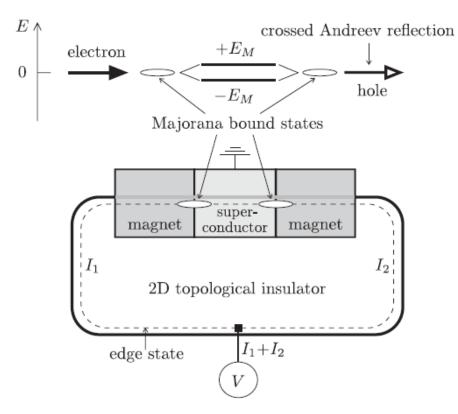
PHYSICAL REVIEW LETTERS

week ending 19 SEPTEMBER 2008

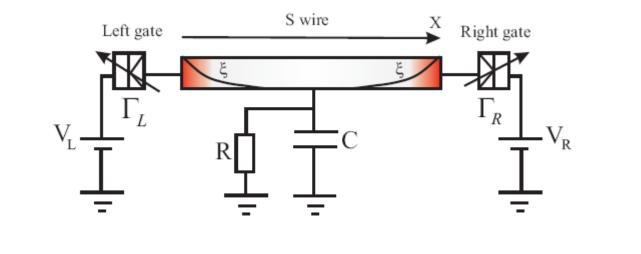
Splitting of a Cooper Pair by a Pair of Majorana Bound States

Johan Nilsson, A. R. Akhmerov, and C. W. J. Beenakker

Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands (Received 3 July 2008; revised manuscript received 15 August 2008; published 18 September 2008)



Coulomb blockade as a recipe to restore nonlocality?



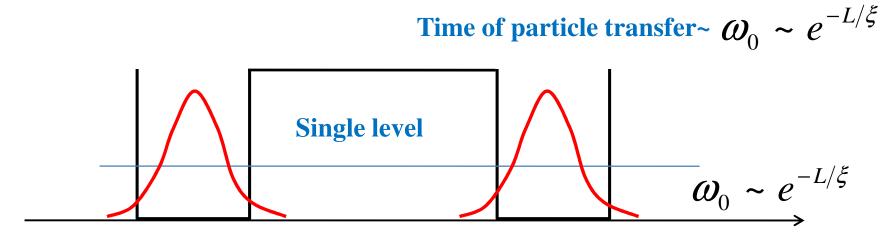
PRL 104, 056402 (2010)PHYSICAL REVIEW LETTERSweek ending
5 FEBRUARY 2010

Electron Teleportation via Majorana Bound States in a Mesoscopic Superconductor

Liang Fu

$$\begin{split} \tilde{H} &= H_L + \delta \left(f^{\dagger} f - \frac{1}{2} \right) + (\lambda_1 c_1^{\dagger} f + \text{H.c.}) \\ &+ (-1)^{n_0} (-i\lambda_2 c_2^{\dagger} f + \text{H.c.}). \end{split}$$

How to avoid teleportation?



Is it possible to excite both the positive and negative energy levels on equal footing and to get a two level problem?

It seems to be impossible since there is only 1 fermion corresponding to these states!

$$\begin{split} \hat{\Psi}_{\alpha}(\mathbf{r},t) &= \sum_{n} \left(u_{\alpha,n}(\mathbf{r},t) \hat{c}_{n} + v_{\alpha,n}^{*}(\mathbf{r},t) \hat{c}_{n}^{\dagger} \right) \\ \hat{\Psi}_{\alpha}^{\dagger}(\mathbf{r},t) &= \sum_{n} \left(u_{\alpha,n}^{*}(\mathbf{r},t) \hat{c}_{n}^{\dagger} + v_{\alpha,n}(\mathbf{r},t) \hat{c}_{n} \right) \\ &i \frac{\partial}{\partial t} \hat{g}_{n} = \begin{pmatrix} \hat{H}_{0} - \mu & \hat{\Delta} \\ \hat{\Delta}^{\dagger} & \mu - \hat{H}_{0}^{*} \end{pmatrix} \hat{g}_{n} \end{split}$$

Despite of the obvious fact that both levels correspond to the only fermion the nonequilibrium time-dependent solutions $\hat{g}_n(\mathbf{r}, t)$ of the BdG equations contain contributions corresponding to both levels.

In equilibrium:

One fermion

Wavefunction:

One BdG level (with positive energy)

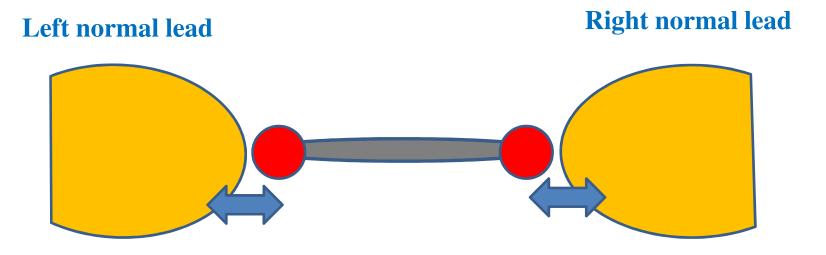
In non-equilibrium:

One fermion

Wavefunction:

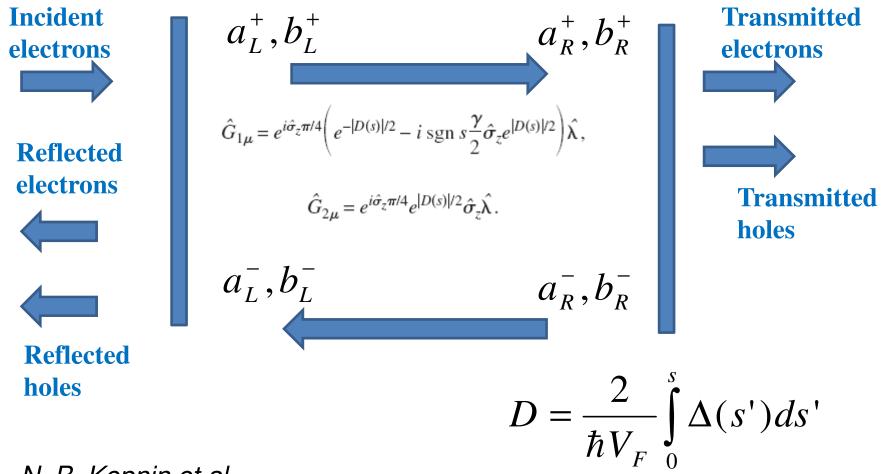
Superposition of many BdG levels (with positive and negative energies)

Some details of charge transfer through the low energy states in NISIN system



We can construct the operator **b** from the states in the lead. Then we can get a 2 level system

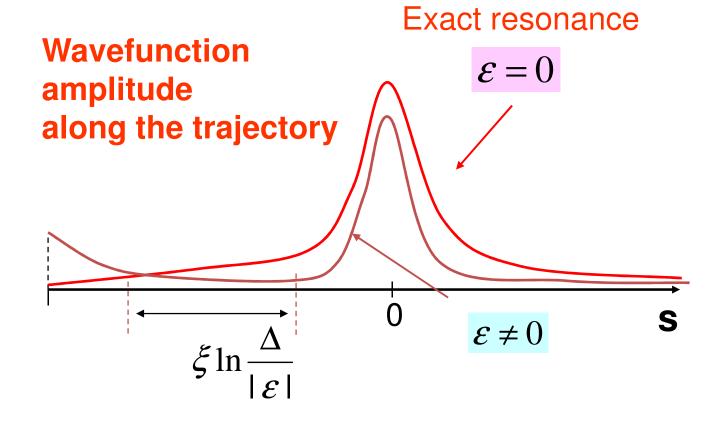
Solution of the scattering problem



N. B. Kopnin et al PRB **68,** 054528 (2003); PRB **75**, 024514 (2007) Wave functions near the resonance Andreev level

$$\hat{G}_{1\mu} = e^{i\hat{\sigma}_z \pi/4} \left(e^{-|D(s)|/2} - i \operatorname{sgn} s \frac{\gamma}{2} \hat{\sigma}_z e^{|D(s)|/2} \right) \hat{\lambda},$$

$$\hat{G}_{2\mu} = e^{i\hat{\sigma}_z \pi/4} e^{|D(s)|/2} \hat{\sigma}_z \hat{\lambda}.$$



Analogy: tunneling between two vortices

Pis'ma v ZhETF, vol. 83, iss. 12, pp. 675 - 680

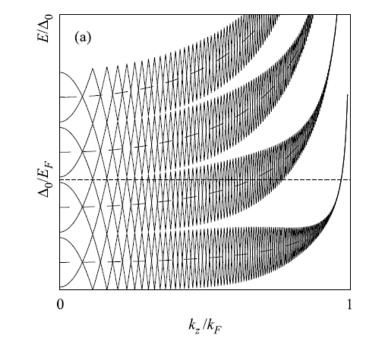
© 2006

Intervortex quasiparticle tunneling and electronic structure of multi-vortex configurations in type-II superconductors

A. S. Mel'nikov¹), M. A. Silaev

Splitting of vortex core levels:

$$\delta \varepsilon \sim \Delta e^{-L/\zeta} \cos(k_F L + \delta)$$



Equations for coupled Majorana states

$$a_{L}^{+} + a_{L}^{-} = A_{L}$$
 $a_{R}^{+} + a_{R}^{-} = A_{R}$

$$\begin{split} \left(\frac{1}{\Delta}\frac{\partial}{\partial t} + \gamma_L\right) &A_L - i\frac{\omega_0}{\Delta}A_R = \sqrt{\gamma_L}e^{-i\varepsilon t} \\ \left(\frac{1}{\Delta}\frac{\partial}{\partial t} + \gamma_R\right) &A_R - i\frac{\omega_0}{\Delta}A_L = 0 \\ &\gamma_L = \frac{1 - |R_L|}{1 + |R_L|} \qquad \gamma_R = \frac{1 - |R_R|}{1 + |R_R|} \\ &\omega_0 = \Delta e^{-D_0}\sin(k_F L + \delta) \qquad D_0 = \frac{2}{\hbar V_F}\int_0^{L/2} \Delta(s') ds' \sim \frac{L}{\xi} \end{split}$$

Equations for coupled Majorana states

$$A_L + A_R = A_+ \qquad \qquad A_L - A_R = A_-$$

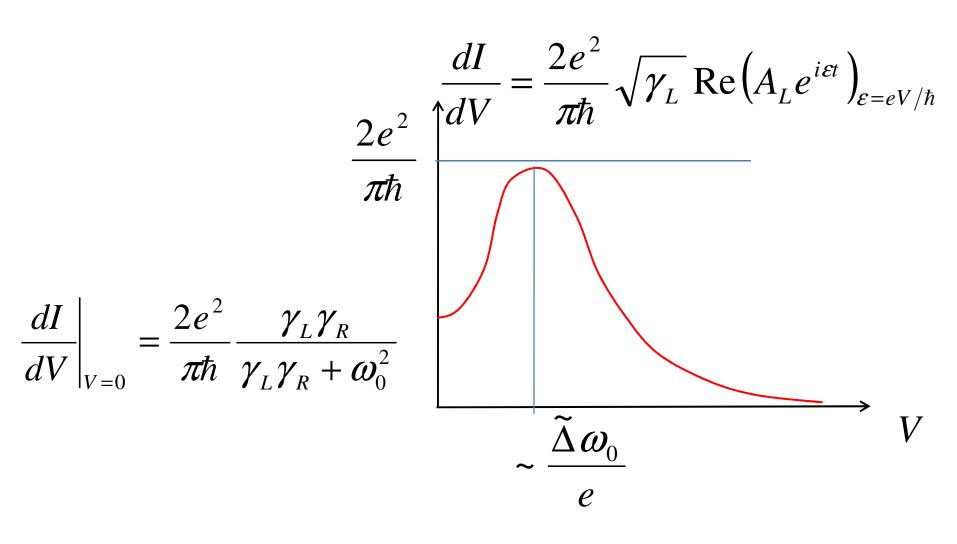
Both states are involved (with positive and negative energies)

$$\left(\frac{1}{\Delta} \frac{\partial}{\partial t} + \frac{\gamma_L + \gamma_R}{2} - i \frac{\omega_0}{\Delta} \right) A_+ + \frac{\gamma_L - \gamma_R}{2} A_- = \sqrt{\gamma_L} e^{-i\varepsilon t}$$
$$\left(\frac{1}{\Delta} \frac{\partial}{\partial t} + \frac{\gamma_L + \gamma_R}{2} + i \frac{\omega_0}{\Delta} \right) A_- + \frac{\gamma_L - \gamma_R}{2} A_+ = \sqrt{\gamma_L} e^{-i\varepsilon t}$$

Single state dynamics:

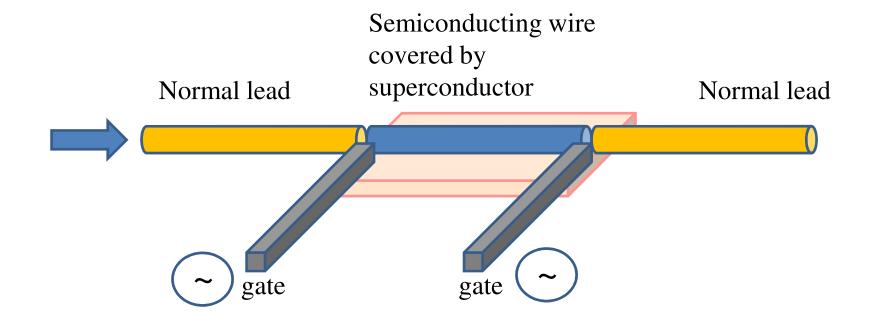
$$\left(\frac{1}{\Delta}\frac{\partial}{\partial t} + \frac{\gamma_L + \gamma_R}{2} + i\frac{\omega_0}{\Delta}\right)A_- = \sqrt{\gamma_L}e^{-i\varepsilon t} \qquad A_+ = 0$$

DC transport. Zero bias peak and its splitting.



Cf. P.Ioselevich and M.Feigelman (2013) for $\gamma_R = 0$

Possible setup for study of dynamics of Majorana states.



AC transport. Barriers with time-dependent transparency.

 $\gamma_L = \gamma_0 + \widetilde{\gamma} \cos \omega t$

$$\gamma_R = \gamma_0 + \widetilde{\gamma} \cos(\omega t + \varphi)$$

Resonances in the average current at:

$$eV = \pm \omega_0 \pm n\hbar \omega$$

Zero bias conductance:

$$\mathcal{L}(\varepsilon) = \Gamma_0 / \pi (\varepsilon^2 + \Gamma_0^2),$$
$$F_{\pm}(x) = \cos x + \sin x (\omega \pm \omega_0) / \Gamma_0.$$

$$\omega \leq \omega_0$$

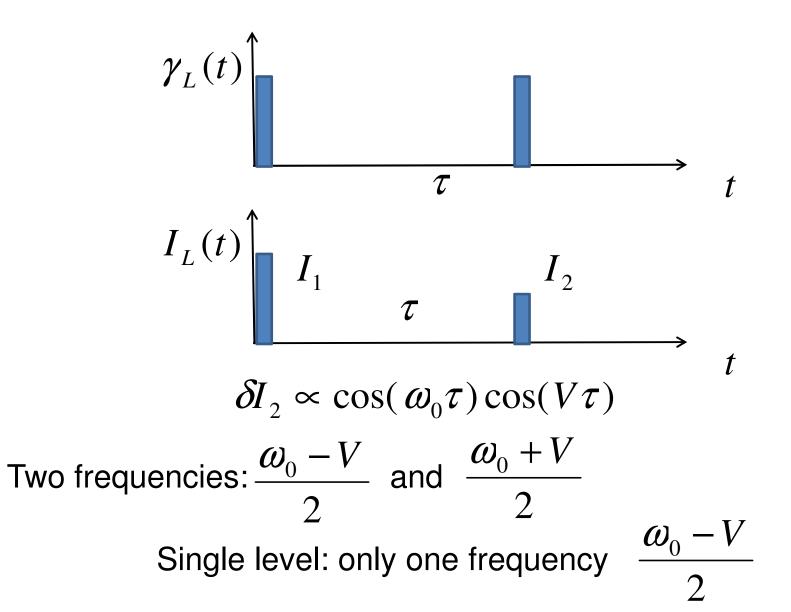
Strong dependence on the phase shift φ

$$\frac{\pi}{e^2} \frac{dI_L}{dV_L} \bigg|_{V_L=0} \simeq \frac{2\Gamma_0^2}{\Gamma_0^2 + \omega_0^2} + \frac{\tilde{\Gamma}\Gamma_0 \cos \omega t}{\omega_0^2 + \Gamma_0^2} + \frac{\pi \tilde{\Gamma}}{\omega_0^2 + \Gamma_0^2} \bigg[\frac{\omega_0^2 - \Gamma_0^2}{2} \sum_{\eta=\pm 1} \mathcal{L}(\omega + \eta \omega_0) F_\eta(\omega t) - \omega_0 \Gamma_0 \sum_{\eta=\pm 1} \eta \mathcal{L}(\omega + \eta \omega_0) F_\eta(\omega t + \varphi_0 - \pi/2) \bigg] ,$$

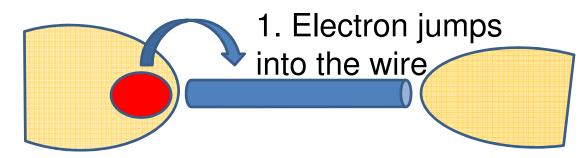
 $\omega >> \omega_0$

No dependence on the phase shift φ

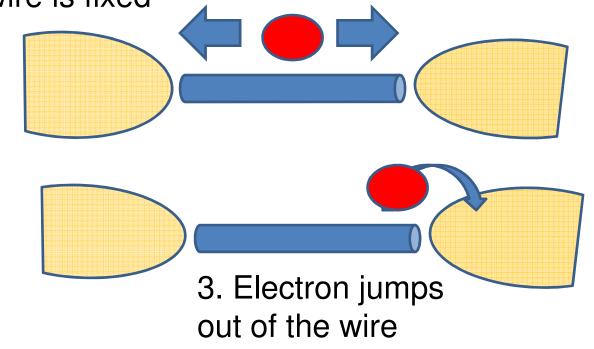
AC transport. Pump probe techniques.



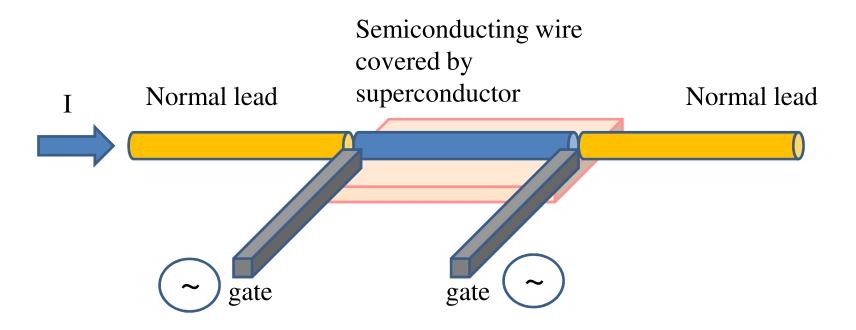
Can the Coulomb blockade destroy the beating phenomenon for a couple of the Majorana states?



2. Internal dynamics = beating. Electron number (and parity) in the wire is fixed



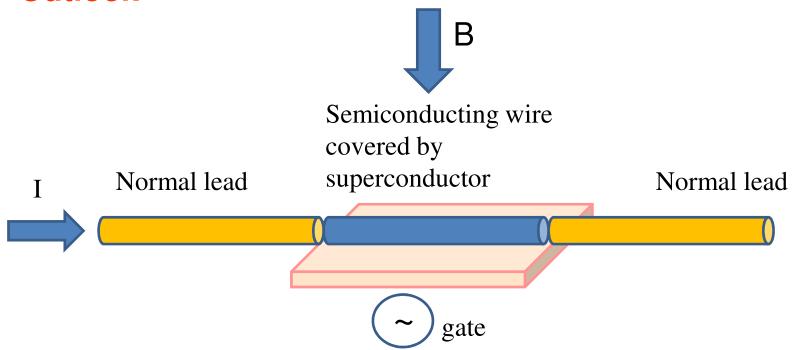
Teleportation paradox and topological stability of Majorana states.



Low frequency dispersion as an inherent property of Majorana states.

Stability range is restricted to low frequencies < \mathcal{O}_0

Outlook



Low frequency dispersion as an inherent property of Majorana states

Possible dynamic effects in oscillating magnetic field or applying an oscillating gate voltage

S leads

Coulomb effects

Some conclusions

There is no teleportation

• Nonlocality of Majorana states in dynamical problems does exist only at very low frequencies $< \omega_0$

• Experimental study of dynamics of 2 Majorana states in semiconducting wires will give the characteristic time scales for their manipulation