Partenaires

CNRS
U.G.A



Rechercher

Sur ce site

Sur le Web du CNRS


Logo LaNef

PHITEM


SFP 38
EcoInfo
Parité Science

Accueil > Événements > Actualités > Séminaire

Colloque CPTGA

Vladimir Dobrosavljevic (Florida State University)
Quantum Critical Behavior at the Mott Point: the Status Quo
Lieu : Amphithéâtre, maison des Magistères,
le vendredi 1er juin 2018 à 11h00
Personne à contacter :

According to early ideas of Mott and Anderson, the interaction-driven metal-insulator transition – the Mott transition – remains a sharp T=0 phase transition even in absence of any spin or charge ordering. Should this phase transition be regarded as a quantum critical point? This basic question has long remained controversial, although it bears direct relevance to many puzzling phenomena in strongly correlated electronic systems. This talk will provide a brief overview of several new theoretical ideas and methods, developed in the last 25 years, that shed new light on this important problem. Especially useful information has very recently been obtained from the study of a class of “maximally frustrated” Hubbard models, which can be solved using non-perturbative methods of Dynamical Mean-Field Theory (DMFT). This theory identified the relevant quantum critical region associated with the Mott metal-insulator transition and found remarkable scaling behavior of transport properties, characteristic of quantum criticality. Precisely this kind of behavior was in very recent experiments on organic Mott systems [1,2]. The detailed mapping of this family of experimental systems to the theoretical phase diagram, identifying the Quantum Widom Line as the relevant organizing principle, has been provided by very recent optical conductivity studies [3]. Further relevance of these ideas for other systems will also be discussed, including the long-standing chicken-and-egg problem of the Mott-Pierls transition in VO2 [4]. [1] Quantum criticality of Mott transition in organic materials, Tetsuya Furukawa, K. Miyagawa, H. Taniguchi, R. Kato & K. Kanoda, Nature Physics 11, 221–224 (2015); See also: http://condensedconcepts.blogspot.ae/2015/03/quantum-criticality-near-mott.html [3] Quantum spin liquids unveil the genuine Mott state, A. Pustogow, M. Bories, A. Löhle, R. Rösslhuber, E. Zhukova, B. Gorshunov, S. Tomić, J.A. Schlueter, R. Hübner, T. Hiramatsu, Y. Yoshida, G. Saito, R. Kato, T.-H. Lee, V. Dobrosavljević, S. Fratini, M. Dressel, arXiv:1710.07241. [4] Resolving the VO2 controversy: Mott mechanism dominates the insulator-to-metal transition, O. Nájera, M. Civelli, V. Dobrosavljević, and M. J. Rozenberg, Phys. Rev. B 95, 035113 (2017); Phys. Rev. B 97, 045108 (2018).


Si vous ne recevez pas les annonces de ces séminaires, abonnez-vous à la liste de diffusion en envoyant cet e-mail.